
会员
计算社会学:系统应用篇
更新时间:2024-06-27 16:19:48 最新章节:封底
书籍简介
自2009年至今,计算社会学步入了发展的黄金时期。多学科的深度交叉融合,以人工智能为代表的数据科学方法的快速发展以及跨空间、多模态数据的快速富集等都使得计算社会学得到蓬勃发展,让社会科学研究呈现出崭新面貌,为解释人类行为、群体认知、社会演化等提供了重要的理论和方法支撑。本书采用渐进式的组织思路,以人工智能的经典模型为基础理论支撑,从社交网络分析、网络动力学、社交媒体挖掘与社群智能三个维度进行延伸,围绕典型应用系统梳理计算社会学的代表性应用。在兼顾广度和深度的前提下,本书深度融合计算机科学、社会学、人工智能、复杂网络、统计学和自然语言处理等多学科的专业概念,突出社会计算学近年来的研究成果和关键技术突破。本书为人工智能与社会科学交叉融合提供了系统性的理论框架、方法体系与应用阐释,是研究人员、专业人员以及工程、计算、AI、互联网等领域的技术人员不可或缺的参考资料,同时也可作为相关领域的高年级本科生和研究生的教材。
品牌:机械工业出版社
上架时间:2024-02-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
郭斌 梁韵基 於志文
同类热门书
最新上架
- 会员人工智能(AI),尤其是生成式语言模型和生成式人工智能(AIGC)模型,正以惊人的速度改变着我们的世界。驾驭这股潮流的关键,莫过于探究自然语言处理(NLP)技术的深奥秘境。本书将带领读者踏上一段扣人心弦的探索之旅,让其亲身感受,并动手搭建语言模型。本书主要内容包括N-Gram,词袋模型(BoW),Word2Vec(W2V),神经概率语言模型(NPLM),循环神经网络(RNN),Seq2Seq(S2计算机14万字
- 会员本书是一部系统介绍AI数字人技术的专业著作,涵盖了数字人的定义、发展历程、关键技术及应用实践等内容,全书共分3部分。在技术基础部分,首先介绍了数字人的定义、发展历程、分类和应用场景,接着详细解析了数字人系统的架构设计、视觉算法和语音合成技术的原理,以及语义理解和知识表示技术如何提升数字人的智能和表现力。在应用实践部分,带领读者深入探索数字人的创作流程,从内容策划、角色建模到交互设计,每一步都进行了计算机26.2万字
- 会员我们生活在一个由算法构筑的世界:这些基于数据的算法不仅掌控着社会的运转、筛选着我们的网络见闻,还构成了自动驾驶、智能家居、前沿医疗、智慧城市乃至元宇宙发展的根本。它们是人类步入智能化新纪元的关键驱动力。随着我们对数字技术的依赖日益加深,数学家和数据研究者得以透过它们窥探我们的日常生活。他们通过收集我们的购物记录、消费倾向、兴趣爱好和旅行路径等数据,试图解码我们的日常行为模式。但是,这些数据驱动的分计算机15.2万字
- 会员本书从技术、应用和产业3个维度为切入点,对智能语音语义领域相关的热点和趋势展开研究。本书以“人与机器的对话”开篇,讲述人类语音生成、传播和感知的过程,引发对于机器智能语音听说的思考,进而阐述技术探索发展史;然后,分析了以语音交互为核心的技术现状,综合剖析提出全双工、端到端模型构建、语音假冒攻击等热点;其次,从政策、投融资和产业规模上,分析整体智能语音产业环境,纵观国内外企业在相关技术和产品上的积极计算机13.6万字
- 会员PyTorch是一个开源的机器学习框架,它提供了动态计算图的支持,让用户能够自定义和训练自己的神经网络,目前是机器学习领域中的框架之一。《PyTorch2.0深度学习从零开始学》共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实战、深度学习理论基础、MNIST分类实战、数据处理与模型可视化、基于PyTorch卷积层的分类实战、PyTorch数据处理与模型可计算机11.3万字
- 会员本书兼顾机器学习基础、经典方法和深度学习方法,对组成机器学习的基础知识和基本算法进行了比较细致的介绍,对广泛应用的经典算法如线性回归、逻辑回归、朴素贝叶斯、支持向量机、决策树和集成学习等算法都给出了深入的分析并讨论了无监督学习的基本方法,对深度学习和强化学习进行了全面的叙述,比较深入地讨论了反向传播算法、多层感知机、CNN、RNN和LSTM等深度神经网络的核心知识和结构;对于强化学习,不仅介绍了经计算机20.6万字
同类书籍最近更新
- 会员本书向数据科学家、数据工程师、架构师和业务分析师展示了如何使用领先的图数据库模型TigerGraph,目标是向读者介绍图数据结构、图分析和图机器学习的概念、技术和工具。三位作者介绍了涵盖多种当代业务需求的真实使用案例。读者将探索从互联数据中获取价值的三阶段方法:连接、分析和学习。几乎每章的开头都列出了对应的三个方面的目标:学习图分析和机器学习的概念;用图分析解决特定问题;了解如何使用GSQL查询语人工智能12.5万字
- 会员近年来,深度学习在人工智能的发展过程中起到了举足轻重的作用,而图神经网络是人工智能领域的一个新兴方向,被称为图上的深度学习。本书详细介绍了从深度学习到图神经网络的基础概念和前沿技术,包括图上的深度学习、图神经网络的数学基础、神经网络学习与算法优化、深度学习基础、神经网络中的表示学习、面向图数据的嵌入表示、初代图神经网络、空域及谱域图卷积神经网络等内容。为增强可读性,本书叙述清晰、内容深入浅出、图文人工智能17.1万字
- 会员本书简洁地介绍了现代神经网络、人工智能和深度学习技术,专门为软件工程师和数据科学家设计。第1章逐步介绍神经网络的基础知识。第2章比较TensorFlow1.x和TensorFlow2.0编程模型。第3章重点介绍回归。第4章介绍卷积神经网络及其在图像处理中的应用。第5章讨论了CNN在图像、视频、音频和文本处理方面的高级应用。第6章重点介绍生成对抗网络。第7章介绍词嵌入。第8章介绍基本嵌入方法的各人工智能17.9万字
- 会员本书从AI的发展历史讲起,介绍了目前最热门的深度学习加速芯片和基于神经形态计算的类脑芯片的相关算法、架构、电路等,并介绍了近年来产业界和学术界一些著名的AI芯片,包括生成对抗网络芯片和深度强化学习芯片等。本书着重介绍了用创新的思维来设计AI芯片的各种计算范式,以及下一代AI芯片的几种范例,包括量子启发的AI芯片、进一步提升智能程度的AI芯片、有机自进化AI芯片、光子AI芯片及自供电AI芯片等。本书人工智能26.7万字
- 会员本书分为两大部分:第一部分主要基于Scikit-Learn,介绍机器学习的基础算法;第二部分则使用TensorFlow和Keras,介绍神经网络与深度学习。此外,附录部分的内容也非常丰富,包括课后练习题解答、机器学习项目清单、SVM对偶问题、自动微分和特殊数据结构等。书中内容广博,覆盖了机器学习的各个领域,不仅介绍了传统的机器学习模型,包括支持向量机、决策树、随机森林和集成方法,还提供了使用Sci人工智能39.5万字